Differential Privacy for Data and Model Publishing of Medical Data
نویسندگان
چکیده
منابع مشابه
Publishing Set-Valued Data via Differential Privacy
Set-valued data provides enormous opportunities for various data mining tasks. In this paper, we study the problem of publishing set-valued data for data mining tasks under the rigorous differential privacy model. All existing data publishing methods for set-valued data are based on partitionbased privacy models, for example k-anonymity, which are vulnerable to privacy attacks based on backgrou...
متن کاملPrivacy - Preserving Data Publishing
The success of data mining relies on the availability of high quality data. To ensure quality data mining, effective information sharing between organizations becomes a vital requirement in today's society. Since data mining often involves person-specific and sensitive information like medical records, the public has expressed a deep concern about their privacy. Privacy-preserving data publishi...
متن کاملTowards Privacy Preserving Data Publishing∗
High quality and useful knowledge is to be found in the integrated data from various organizations, and the discovered knowledge is essential for building intelligent systems such as business analysis and health surveillance. However, concern about breaching privacy is a major obstacle of this process. This project aims to develop new efficient and effective techniques for privacy protection in...
متن کاملPrivacy preserving data publishing: Review
Privacy preserving data publishing (PPDP) methods a new class of privacy preserving data mining (PPDM) technology, has been developed by the research community working on security and knowledge discovery. It is common to share data between two organizations in many application areas. When data are to be shared between parties, there could be some sensitive patterns which should not be disclosed...
متن کاملPrivacy-preserving data publishing for cluster analysis
Releasing person-specific data could potentially reveal sensitive information about individuals. k-anonymization is a promising privacy protection mechanism in data publishing. Although substantial research has been conducted on k-anonymization and its extensions in recent years, only a few prior works have considered releasing data for some specific purpose of data analysis. This paper present...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2019
ISSN: 2169-3536
DOI: 10.1109/access.2019.2947295